Identification of the individual residues that determine human CD59 species selective activity.
نویسندگان
چکیده
Formation of the cytolytic membrane attack complex of complement on host cells is inhibited by the membrane-bound glycoprotein, CD59. The inhibitory activity of CD59 is species restricted, and human CD59 is not effective against rat complement. Previous functional analysis of chimeric human/rat CD59 proteins indicated that the residues responsible for the species selective function of human CD59 map to a region contained between positions 40 and 66 in the primary structure. By comparative analysis of rat and human CD59 models and by mutational analysis of candidate residues, we now identify the individual residues within the 40-66 region that confer species selective function on human CD59. All nonconserved residues within the 40-66 sequence were substituted from human to rat residues in a series of chimeric human/rat CD59 mutant proteins. Functional analysis revealed that the individual human to rat residue substitutions F47A, T51L, R55E, and K65Q each produced a mutant human CD59 protein with enhanced rat complement inhibitory activity with the single F47A substitution having the most significant effect. Interestingly, the side chains of the residues at positions 47, 51, and 55 are all located on the short single helix (residues 47-55) of CD59 and form an exposed continuous strip parallel to the helix axis. A single human CD59 mutant protein containing rat residue substitutions at all three helix residues produced a protein with species selective activity comparable to that of rat CD59. We further found that synthetic peptides spanning the human CD59 helix sequence were able to inhibit the binding of human CD59 to human C8, but had little effect on the binding of rat CD59 to rat C8.
منابع مشابه
Mapping the regions of the complement inhibitor CD59 responsible for its species selective activity.
CD59 is a widely distributed membrane-bound glycoprotein that inhibits the formation of the cytolytic membrane attack complex (MAC) of complement on host cells. CD59 from different species varies in its capacity to inhibit heterologous complement, and this species selective function of CD59 contributes to the phenomenon of homologous restriction. Here, we demonstrate that human CD59 is not an e...
متن کاملContribution of the N-linked carbohydrate of erythrocyte antigen CD59 to its complement-inhibitory activity.
The contribution of N-linked carbohydrate to the complement-inhibitory function of the human erythrocyte membrane glycoprotein, CD59, was investigated. Amino acid sequence analysis of tryptic peptides labeled with [3H]borohydride revealed an N-linked carbohydrate moiety at the Asn18 residue. No O-linked carbohydrate was detected, as judged by the failure of asialo-CD59 to bind peanut agglutinin...
متن کاملMutational Analysis of the Active Site and Antibody Epitopes of the Complement-inhibitory Glycoprotein, CD59
The Ly-6 superfamily of cell surface molecules includes CD59, a potent regulator of the complement system that protects host cells from the cytolytic action of the membrane attack complex (MAC). Although its mechanism of action is not well understood, CD59 is thought to prevent assembly of the MAC by binding to the C8 and/or C9 proteins of the nascent complex. Here a systematic, structure-based...
متن کاملIsolation and identification of Campylobacter spp. and Campylobacter coli from poultry carcasses by conventional culture method and multiplex PCR in Mashhad, Iran
The genus Campylobacter is of great importance to public health because it includes several species that may cause diarrhoea. Poultry and poultry products are known as important sources of human campylobacteriosis. In this study, during the autumn months of 2005, a total of 100 samples from poultry carcasses, representing 20 broiler flocks were obtained by rinse test, after the chilling stage ...
متن کاملMolecular basis for a link between complement and the vascular complications of diabetes.
Activated terminal complement proteins C5b to C9 form the membrane attack complex (MAC) pore. Insertion of the MAC into endothelial cell membranes causes the release of growth factors that stimulate tissue growth and proliferation. The complement regulatory membrane protein CD59 restricts MAC formation. Because increased cell proliferation characterizes the major chronic vascular complications ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 274 16 شماره
صفحات -
تاریخ انتشار 1999